92 research outputs found

    Application of a General Purpose Software Package on Shear Forces and Bending Moment Calculations in Ship Structure

    Get PDF
    The calculation of shear forces and bending moments are the basis of every ship design documentation. It is essential for determining the strength of the ship and the reliability of the structure itself. Nowadays, due to a sheer volume of data, this calculation is performed exclusively with the help of specialized software packages. Such shear force and bending moment curves can often be obtained within the software packages specially designed for checking the ship’s design according to specific classification societies’ rules. Usually, they already have built-in formulas and guidelines to execute that task properly. However, such software packages often do not meet all the end user’s needs. For example, for the initial project stage, special software packages with the functionality of easy designing of a ship form are usually used, while the aforementioned packages are used in later design stages when performing stability and structure checks. This transition often requires converting files into the appropriate type from one software to another. The Rhinoceros program is widespread in the shipbuilding profession, and it is often used in the initial stages of the project. It also allows automation of the process with the help of integrated scripts. Therefore, the authors have decided to examine the possibility of using Python scripts within the Rhinoceros software package. The mentioned script will calculate the transverse forces and bending moment based on the previously modelled hull

    The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century

    Get PDF
    AbstractStudies of global environmental change make extensive use of scenarios to explore how the future can evolve under a consistent set of assumptions. The recently developed Shared Socioeconomic Pathways (SSPs) create a framework for the study of climate-related scenario outcomes. Their five narratives span a wide range of worlds that vary in their challenges for climate change mitigation and adaptation. Here we provide background on the quantification that has been selected to serve as the reference, or ‘marker’, implementation for SSP2. The SSP2 narrative describes a middle-of-the-road development in the mitigation and adaptation challenges space. We explain how the narrative has been translated into quantitative assumptions in the IIASA Integrated Assessment Modelling Framework. We show that our SSP2 marker implementation occupies a central position for key metrics along the mitigation and adaptation challenge dimensions. For many dimensions the SSP2 marker implementation also reflects an extension of the historical experience, particularly in terms of carbon and energy intensity improvements in its baseline. This leads to a steady emissions increase over the 21st century, with projected end-of-century warming nearing 4°C relative to preindustrial levels. On the other hand, SSP2 also shows that global-mean temperature increase can be limited to below 2°C, pending stringent climate policies throughout the world. The added value of the SSP2 marker implementation for the wider scientific community is that it can serve as a starting point to further explore integrated solutions for achieving multiple societal objectives in light of the climate adaptation and mitigation challenges that society could face over the 21st century

    Health professionals' knowledge of probiotics : an international survey

    Get PDF
    The objective of this study was to survey health professionals to investigate their knowledge of probiotics. An online survey was conducted to gather data on the knowledge of health professionals. The online survey was distributed via email and social media platforms using snowball sampling. A total of 1066 health professionals (859; 80.6% female) from 30 countries responded to the survey. Most of the respondents evaluated their knowledge of probiotics as medium (36.4%) or good (36.2%). Only 8.9% of the respondents rated it as excellent. No statistical difference in knowledge was found between male and female health professionals. Over 80% of pharmacists, allied health professionals, medical doctors and dentists, and other health professionals knew the correct definition of probiotics as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host”, whereas three quarters of registered nurses and midwives and less than two thirds of psychologists identified the correct definition. Statistically, more female than male health professionals knew the correct definition of probiotics. The most frequently recognized species of bacteria containing probiotic strains were Lactobacillus acidophilus (92%), Bifidobacterium bifidum (82%), and Lactobacillus rhamnosus (62%). The opinions on when it is best to take probiotics were different (χ2 = 28.375; p < 0.001), with 90.2% of respondents identifying that probiotics have beneficial effects if taken during antibiotic therapy, 83.5% for diarrhea, 70.6% for constipation, 63.3% before traveling abroad, and 60.4% for treating allergies. Almost 79% of health professionals involved in this study have advised their patients to use probiotics and 57.5% of the respondents wanted to learn more about probiotics. All things considered, health professionals have a medium level of knowledge of probiotics, which could be improved by the implementation of targeted learning programs. As probiotics have many beneficial effects in a wide range of health areas, health professionals need to adopt the use of probiotics in clinical practice

    The Antarctic Peninsula Under a 1.5°C Global Warming Scenario

    Get PDF
    Warming of the Antarctic Peninsula in the latter half of the twentieth century was greater than any other terrestrial environment in the Southern Hemisphere, and clear cryospheric and biological consequences have been observed. Under a global 1.5°C scenario, warming in the Antarctic Peninsula is likely to increase the number of days above 0°C, with up to 130 of such days each year in the northern Peninsula. Ocean turbulence will increase, making the circumpolar deep water (CDW) both warmer and shallower, delivering heat to the sea surface and to coastal margins. Thinning and recession of marine margins of glaciers and ice caps is expected to accelerate to terrestrial limits, increasing iceberg production, after which glacier retreat may slow on land. Ice shelves will experience continued increase in meltwater production and consequent structural change, but not imminent regional collapses. Marine biota can respond in multiple ways to climatic changes, with effects complicated by past resource extraction activities. Southward distribution shifts have been observed in multiple taxa during the last century and these are likely to continue. Exposed (ice free) terrestrial areas will expand, providing new habitats for native and non-native organisms, but with a potential loss of genetic diversity. While native terrestrial biota are likely to benefit from modest warming, the greatest threat to native biodiversity is from non-native terrestrial species

    Increased importance of methane reduction for a 1.5 degree target

    Get PDF
    To understand the importance of methane on the levels of carbon emission reductions required to achieve temperature goals, a processed-based approach is necessary rather than reliance on the Transient Climate Response to Emissions. We show that plausible levels of methane (CH4) mitigation can make a substantial difference to the feasibility of achieving the Paris climate targets through increasing the allowable carbon emissions. This benefit is enhanced by the indirect effects of CH4 on ozone (O3). Here the differing effects of CH4 and CO2 on land carbon storage, including the effects of surface O3, lead to an additional increase in the allowable carbon emissions with CH4 mitigation. We find a simple robust relationship between the change in the 2100 CH4 concentration and the extra allowable cumulative carbon emissions between now and 2100 (0.27 ± 0.05 GtC per ppb CH4). This relationship is independent of modelled climate sensitivity and precise temperature target, although later mitigation of CH4 reduces its value and thus methane reduction effectiveness. Up to 12% of this increase in allowable emissions is due to the effect of surface ozone. We conclude early mitigation of CH4 emissions would significantly increase the feasibility of stabilising global warming below 1.5C, alongside having co-benefits for human and ecosystem health

    Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy

    Get PDF
    Recent estimates of the amount of carbon dioxide that can still be emitted while achieving the Paris Agreement temperature goals are larger than previously thought. One potential reason for these larger estimates may be the different temperature metrics used to estimate the observed global mean warming for the historical period, as they affect the size of the remaining carbon budget. Here we explain the reasons behind these remaining carbon budget increases, and discuss how methodological choices of the global mean temperature metric and the reference period influence estimates of the remaining carbon budget. We argue that the choice of the temperature metric should depend on the domain of application. For scientific estimates of total or remaining carbon budgets, globally averaged surface air temperature estimates should be used consistently for the past and the future. However, when used to inform the achievement of the Paris Agreement goal, a temperature metric consistent with the science that was underlying and directly informed the Paris Agreement should be applied. The resulting remaining carbon budgets should be calculated using the appropriate metric or adjusted to reflect these differences among temperature metrics. Transparency and understanding of the implications of such choices are crucial to providing useful information that can bridge the science–policy gap
    corecore